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Note 

The Calculation of the Pressure in Unsteady Flows 
Using a Control-Volume Approach 

A new method is proposed to calculate the pressure correction in unsteady flows 
using the finite-difference scheme of the TEACH-T code [ 11. The method was 
originally developed to study the flow field in axisymmetric internal combustion 
engine configurations [2]; however, its extension to other geometries and three 
dimensions is obvious. In many flow fields, pressure variations are produced by the 
compression and expansion of the gas, as in an internal combustion engine; however, 
pressure variations are also produced by the fluid motions.Since the pressure drives 
the flow, we must accurately predict the small-scale pressure variations in order to 
resolve the flow field. To calculate the pressure, we propose to correct the pressure 
field after the solution of the momentum equations has been obtained in two ways: 
first, a uniform global pressure correction, denoted by p’, is made equally to the 
entire flow field, and second, local pressure corrections, denoted by p’, are made 
which vary from point to point. 

THE UNIFORM GLOBAL PRESSURE AND TEMPERATURE CORRECTIONS 

In unsteady, axisymmetric flows the continuity equation reads 

where t, r, z, U, u and p stand for the time, radial and axial coordinates, axial and 
radial velocities, and density, respectively. When (1) is integrated over a control 
volume, as shown in Fig. 1, the expression 

iv;+ -M::+ni~+‘-ni”,+‘+~::+‘-rit:+‘=O (2) 

is obtained, where 

nii are the mass fluxes through the i-boundaries of the control volume centered at P; 
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i IN 

FIG. 1. A computational cell. 

Vol is the volume of the cell per radian and dt is the time-step. Equation (2) can be 
written as 

A4;+’ -M;+riz,“+‘=o, (4) 

where 

When the flow field has converged, (2) is identically satisfied, but suppose that we 
are iterating within the time-step from I to t $ dt, and the flow field has not yet 
converged. At that iteration (*) we have 

A4p*-A4;+ni,*=o. (6) 

Using the equation of state, p = p(p, T) and assuming that the flow field at the 
iteration (*) is nearly converged, we can expand p in a Taylor series expression as 

(7) 

where p’ and p are the global pressure and temperature corrections. Substituting (7) 
into (4), and adding the result over the whole computational domain (F), we have 

where 

(8) 

(9) 
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Equation (8) contains two unknowns, namely, p’ and T’, so another equation is 
required to calculate the global pressure and temperature corrections. This equation is 
obtained from the finite-difference form of the energy equation which reads 

=LJp;‘l (!$);+‘-p;(;);] +s;+i, 

where T and p stand for the temperature and pressure; C, stands for the specific heat 
at constant pressure; 4, accounts for the total heat flux out of the control volume 
boundaries by convection and diffusion; and S, is the source term associated with 
dissipation, chemical reaction, etc. 

Assuming that 

,;+I = c+ T’, (12) 

p;+‘=pp*+p’, (13) 

A4 ;+‘=M;+~~p’+y;T’ (14) 

(where the last equation comes from (7) and (3)), substituting ( 12)-( 14) into ( 11) 
neglecting nonlinear terms in perturbations, and adding the resulting equation over 
the whole computational domain we obtain 

which (with (8)) allows to calculate the global pressure and temperature corrections. 
This use of an explicit formula for 7 is a significant difference between the present 
study and the work of Gosman and Watkins [3]. They employed old values for the 
mass terms in (11). As a result they do not get the cancellation of terms which lead 
to the explicit form given by (15). 

THE LOCAL PRESSURE CORRECTION 

To calculate the local pressure correction, and thus, to bring in balance the local 
continuity equation, we use the finite-difference form of the continuity equation and a 
staggered grid for the calculation of the flow velocities [ 1, 21. Designing the velocities 
at the cell boundaries of the volume centered at P with the indices of the grid point at 
which they point, we have, for example, 

mw 
an+1 = 

P, “+‘u;:+‘a~=P~a,[u,*+D~,(pl,-pp;,)], (16) 
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where a, is the area of west boundary, p’ stands for the local pressure correction and 
the asterisk stands for guessed values. Also 

D,, = au, a, 
qp,- pp) z A;” ’ (17) 

where A:+’ . IS obtained from the axial momentum equation in finite-difference form: 

(18) 

where CC stands for summation along the u-velocity cell. 
Analogous expressions can be obtained for tiit,“+‘, tiz”, and ti:“, which after 

substitution into (4), and taking (14) into account, we obtain 

~P*-~~+yp*?;;+mr+B~(pl+~l,)+C~,a,D,(p;l-pl,)=O, (19) 
c 

which can be identified as the finite-difference form of a Poisson-type equation for the 
local pressure correction p’, which can be written as 

where 

A, = @aD>, , (21) 

(22) 

(23) 

(24) 

The source term S, represents the local imbalance of the continuity equation. When 
S, = 0, the solution of (20) is pb = 0, because this quantity has a zero normal 
gradient at the boundaries where the normal velocity is prescribed. 

At this point, we remark that the pressure correction is done in two ways; in the 
first, a global balance of energy and mass is assumed, and in the second, the local 
continuity equation is employed. However, the temperature is corrected only globally 
to assure a global balance of energy. The calculation of the global temperature and 
pressure corrections is only valid when the next iteration within the time step is close 
enough to the previous iteration to assure the validity of the Taylor series expansion 
and that the product of perturbations in the energy equation can be neglected. 
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COMPARISON WITH OTHER METHODS 

In this section we compare this method with that of Gosman and Watkins [3], and 
with experimental results obtained with a laser Doppler velocimeter in a four-stroke, 
axisymmetric piston-cylinder configuration [4]. In this comparison, we have used the 
same grid, time-step, initial conditions and boundary conditions for both methods. 
The configuration under study consists of a piston, driven by an electric motor at 
31.25 rpm, which slides over a transparent cylinder. Details of the geometry, initial 
conditions and boundary conditions have been reported by Ramos [4] and are not 
repeated here. Figures 2 and 3 show the mean axial velocities at three locations inside 
the cylinder at 240 and 480 crank-angle degrees. A nondimensional coordinate 
transformation was used to change the moving boundary value problem into a fixed 
one, and the figures are shown in this transformed space [4]. In these figures the 
velocity is positive towards the right of the refeence lines and goes to zero at the wall. 

- 
10 cmisec 

FIG. 2. Mean axial velocity profiles at 240”: (1) Axial location at 0.635 cm: 0, experiments; -, 
present method; ---, Gosman and Watkins’ method. (2) Axial location at 2.54 cm: A, experiment; 
- -3 present method; - .. -, Gosman and Watkins’ method. (3) Axial location at 5.08 cm: Cl, 
experiments ; - x -, present method ; - XX -, Gosman and Watkins’ method. 

- 
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FIG. 3. Mean axial velocity profiles at 480” (for legend see Fig. 2). 
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Figure 2 shows that our predictions are in better agreement than those obtained using 
the Gosman and Watkins’ method [3] in the compression stroke. Their method shows 
a bigger recirculation zone, underpredicts the negative velocity at 0.635 cm and over- 
predicts it at 2.54 and 5.08 cm. This overprediction is substantial at the axial location 
at 5.08 cm, while the positive velocities at 2.54 cm are in much better agreement than 
those obtained with the present method. In Fig. 3 the piston, which is moving towards 
the right of the figure, drives the almost undirectional flow. Both methods overpredict 
the axial velocity in the power stroke, and show the same flow trends, but Gosman 
and Watkins’ method predicts much higher axial velocities. There are also some 
savings in computer time. For example, to get the same convergence at 240 and 480 
crank-angle degrees our method needed 30 and 21 interactions, while that of Gosman 
and Watkins method required 41 and 39, respectively. Our method tends to converge 
faster, exckpt for the first 50 crank-angle degrees after top dead center of the intake. 
This can only be explained by the fact that the boundary condition for the axial 
velocity during the intake stroke is proportional to the root square of the pressure 
difference between the cylinder and atmosphere; however, if this boundary condition 
is specified as constant, our method tends to converge faster for the entire cycle, i.e., 
the 720 crank-angle degrees. Globally speaking, at 31.25 rpm and a compression 
ratio of 7 our method is 1.47 times faster. In the power stroke only, the method is 
about 1.63 times faster than of Gosman and Watkins’; however, for much simpler 
configurations the two methods have not been compared to each other. 
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I The same convergence criterion was used for both methods. This criterion states that to advance the 
time the mass residue in any cell has to be less than 10e4 the instantaneous mass flow swept by the 
piston. 


